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Recap: Three Key Issues that are Always Present

Feasible Set
• Constraints restrict set of states for which optimization problem is feasible

• MPC controller is only defined in the feasible set, where a solution exists

⇒ Drop terminal set

⇒ Soften constraints

Tracking
• Classic MPC problem: Regulation to the origin

• Common task in practice: Tracking of non-zero output set points

⇒ Move origin and solve regulation problem

Disturbance rejection
• Constant disturbance causes offset from the origin / the desired set point

⇒ Estimate disturbance and compensate by ‘tracking’ to artificial target
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MPC without Terminal Set
Can remove terminal constraint while maintaining stability if

• initial state lies in sufficiently small subset of feasible set

• N is sufficiently large

such that terminal constraint is satisfied without enforcing it
⇒ Solution of finite horizon MPC problem = infinite horizon solution

−5 0 5
−3

−2

−1

0

1

2

3

x
1

x 2

−5 0 5
−3

−2

−1

0

1

2

3

x
1

x 2

Downsides:
• Loose recursive feasibility → Feasible now, does not mean feasible later
• Characterizing invariant region extremely difficult→ It may work, it may not
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Soft constrained MPC problem setup
min

u

N−1∑

i=0

xT
i Qxi + uT

i Rui + ρ(εi ) + xT
N PxN

s.t. xi+1 = Axi + Bui

Hxxi ≤ kx + εi ,

Huui ≤ ku,

εi ≥ 0

hTx x � kx

�1

�2

�3 = 0

x1

x2

x3

• Relax state constraints by introducing so called slack variables εi ∈ Rp

• Penalize constraint violation in cost by means of penalty ρ(εi )

Pros/Cons

• Problem is always feasible (critical!)

• Tune ρ for tradeoff between amount of violation and duration (difficult)

• No theory: May not be stabilizing

⇒ Always used in practice
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Recap: Three Key Issues that are Always Present

Feasible Set
• Constraints restrict set of states for which optimization problem is feasible

• MPC controller is only defined in the feasible set, where a solution exists

⇒ Drop terminal set

⇒ Soften constraints

Tracking
• Classic MPC problem: Regulation to the origin

• Common task in practice: Tracking of non-zero output set points

⇒ Move origin and solve regulation problem

Disturbance rejection
• Constant disturbance causes offset from the origin / the desired set point

⇒ Estimate disturbance and compensate by ‘tracking’ to artificial target
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MPC problem for tracking
• Obtain target steady-state corresponding to reference r .

• Initial state ∆x = x − xs .

• Apply regulation problem to new system in Delta-Formulation:

min
N−1∑

i=0

∆xT
i Q∆xi + ∆uT

i R∆ui + Vf (∆xN)

s.t. ∆x0 = ∆x

∆xi+1 = A∆xi + B∆ui

Hx∆xi ≤ kx − Hxxs

Hu∆ui ≤ ku − Huus

∆xN ∈ Xf

plant


target

selector


MPC 
regulator


r

y

x

u = �u + us

xs , us

�x

• Find optimal sequence of ∆u∗

• Input applied to the system is u∗0 = ∆u∗0 + us
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Offset-free tracking: Delta-Formulation

At each sampling time

1. Estimate state and disturbance x̂ , d̂

2. Obtain (xs , us) from steady-state target problem using disturbance estimate

3. Initial state ∆x̂ = x̂ − xs

4. Solve MPC problem for tracking in Delta-Formulation:

min
N−1∑

i=0

∆xT
i Q∆xi + ∆uT

i R∆ui + Vf (∆xN)

s.t. ∆x0 = ∆x̂

∆xi+1 = A∆xi + B∆ui

Hx∆xi ≤ kx − Hxxs

Hu∆ui ≤ ku − Huus

∆xN ∈ Xf

x̂ , d̂

plant


target

selector


MPC 
regulator


r

y

u = �u + us

xs , us

estimator


�x̂
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Lecture Take Homes

1. MPC relies on a model, but models are far from perfect

2. Noise and model inaccuracies can cause:
Constraint violation
Sub-optimal behaviour can result

3. Persistent noise prevents the system from converging to a single point

4. Can incorporate some noise models into the MPC formulation
Solving the resulting optimal control problem is extremely difficult
Many approximations exist, but most are very conservative
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Outline

1. Uncertainty Models

2. Impact of Bounded Additive Noise

• Choosing a cost to minimize

• Robust Constraint Satisfaction

3. Robust Open-Loop MPC
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MPC vs The Real World
Predictive control assumption:

x+ = f (x , u)

• System evolves in a predictable
fashion

The real world:

x+ = g(x , u,w ; θ)

• Random noise w changes the
evolution of the system

• Model structure is unknown

• Unknown parameters θ impact the
dynamics

(w changes with time, θ is unknown,
but constant)

This lecture: What can we hope to do in this (real) situation?

Robust MPC 7–10 Model Predictive Control ME-425



Recall: Goals of Constrained Control
Constrained system

x+ = f (x , u) (x , u) ∈ X,U

Design control law u = κ(x) such that the system:

1. Satifies constraints : {xi} ⊂ X, {ui} ⊂ U
2. Is stable: limi→∞ xi = 0

3. Optimizes “performance”

4. Maximizes the set {x0 |Conditions 1-3 are met}

What if f is only known approximately?
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Goals of Robust Constrained Control
Uncertain Constrained System

x+ = f (x , u,w ; θ) (x , u) ∈ X,U w ∈W θ ∈ Θ

Design control law u = κ(x) such that the system:

1. Satifies constraints : {xi} ⊂ X, {ui} ⊂ U for all disturbance realizations

2. Is stable: Converges to a neighbourhood of the origin

3. Optimizes (expected/worst-case) “performance”

4. Maximizes the set {x0 |Conditions 1-3 are met}

Meeting these goals requires some knowledge/assumptions about the random
values w and θ.
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Examples of Common Uncertainty Models
Measurement / Input Bias

g(x , u,w ; θ) = f (x , u) + θ

θ unknown, but constant

• Unexpected offset can cause constraint violation

• Offset doesn’t change, or changes slowly with time
→ Generally handled by estimating offset and compensating

(last week’s lecture)

• Constraint violation still possible before offset is estimated
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Examples of Common Uncertainty Models
Linear Parameter Varying System

g(x , u,w ; θ) =

t∑

k=0

θkAkx +

t∑

k=0

θkBku , 1T θ = 1, θ ≥ 0

Ak , Bk known, θk unknown, but constant

• Actual system is linear - but exact dynamics unknown

• Preventing constraint violation requires considering all possible trajectories
(very conservative)

• Often handled by estimating θ (adaptive control), since it is constant, or
changes slowly

Very difficult if system is unstable
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Examples of Common Uncertainty Models
Polytopic Uncertainty

g(x , u,w ; θ) =

t∑

k=0

wkAkx +

t∑

k=0

wkBku , 1Tw = 1, w ≥ 0

Ak , Bk known, wk unknown and changing at each sample time

• Dynamics change randomly at each point in time → nonlinear system

• Preventing constraint violation requires considering all possible trajectories
(not conservative, since they can all happen)

• Commonly dealt with via robust MPC

We will not cover this case in this course, but analysis is similar to additive
noise.
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Examples of Common Uncertainty Models
Additive Stochastic Noise

g(x , u,w ; θ) = Ax + Bu + w

Distribution of w known

• Distribution of the disturbance is known

• Problem significantly more challenging (even to formulate the goals)

• Topic of active research
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Examples of Common Uncertainty Models
Additive Bounded Noise

g(x , u,w ; θ) = Ax + Bu + w , w ∈W

A, B known, w unknown and changing with each sample

• Dynamics are linear, but impacted by random, bounded noise at each time
step

• Can model many nonlinearities in this fashion, but often a conservative
model

• The noise is persistent, i.e., it does not converge to zero in the limit

The next lectures will focus on uncertainty models of this form.
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Outline

1. Uncertainty Models

2. Impact of Bounded Additive Noise

• Choosing a cost to minimize
• Robust Constraint Satisfaction

3. Robust Open-Loop MPC
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Goals of Robust Constrained Control
Uncertain constrained linear system

x+ = Ax + Bu + w (x , u) ∈ X,U w ∈W

Design control law u = κ(x) such that the system:

1. Satifies constraints : {xi} ⊂ X, {ui} ⊂ U for all disturbance realizations

2. Is stable: Converges to a neighbourhood of the origin

3. Optimizes (expected/worst-case) “performance”

4. Maximizes the set {x0 |Conditions 1-3 are met}

Challenge: Cannot predict where the state of the system will evolve
We can only compute a set of trajectories that the system may follow

Idea: Design a control law that will satisfy constraints and stabilize the system
for all possible disturbances
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Uncertain State Evolution
Given the current state x0, the model x+ = Ax + Bu + w and the set W,
where can the state be i steps in the future?

x0 ;YHQLJ[VY`�MVY w = 0

4HU`�WVZZPISL
[YHQLJ[VYPLZ �i(x0,u,w)

Define φi (x0,u,w) as the state that the system will be in at time i if the state
at time zero is x0, we apply the input u := {u0, . . . , uN−1} and we observe the
disturbance w := {w0, . . . ,wN−1}.
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Uncertain State Evolution
Nominal system

x+ = Ax + Bu

x1 = Ax0 + Bu0
x2 = A2x0 + ABu0 + Bu1
...

xi = Aix0 +

i−1∑

k=0

ABui−k

Uncertain system

x+ = Ax + Bu + w ,w ∈W

φ1 = Ax0 + Bu0 + w0

φ2 = A2x0 + ABu0 + Bu1 + Aw0 + w1

...

φi = Aix0 +

i−1∑

k=0

AkBui−k +

i−1∑

k=0

Akwi−k

φi = xi +

i−1∑

k=0

Akwi−k

Uncertain evolution is the nominal system + offset caused by the disturbance
(Follows from linearity)
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Uncertain State Evolution

x0 ;YHQLJ[VY`�MVY w = 0

4HU`�WVZZPISL
[YHQLJ[VYPLZ �i(x0,u,w)

xi

�i(x0,u,w) = xi +

i�1�

k=0

Akwk
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Goals of Robust Constrained Control
Uncertain constrained linear system

x+ = Ax + Bu + w (x , u) ∈ X,U w ∈W

Design control law u = κ(x) such that the system:

1. Satifies constraints : {xi} ⊂ X, {ui} ⊂ U for all disturbance realizations

2. Is stable: Converges to a neighbourhood of the origin

3. Optimizes (expected/worst-case) “performance”
4. Maximizes the set {x0 |Conditions 1-3 are met}
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Defining a Cost to Minimize

Previously, we defined some function that describes a ‘good’ trajectory:

J(x0,u) :=

N−1∑

i=0

l(xi , ui ) + Vf (xN)

However, there are now many trajectories that may occur, depending on the
disturbance w.

The cost is now a function of the disturbance seen, and therefore each
possible trajectory has a different cost:

J(x0,u,w) :=

N−1∑

i=0

l(φi (x0,u,w), ui ) + Vf (φN(x0,u,w))

Need to ‘eliminate’ the dependence on w.
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Defining a Cost to Minimize

Several common options:

• Minimize the expected value (requires some assumption on the distribution)

VN(x0,u) := E [J(x0,u,w)]

• Minimize the variance (requires some assumption on the distribution)

VN(x0,u) := Var (J(x0,u,w))

• Take the worst-case

VN(x0,u) := max
w∈WN−1

J(x0,u,w)

• Take the nominal case

VN(x0,u) := J(x0,u, 0)
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Defining a Cost to Minimize

In this lecture we will assume the nominal case for simplicity.

VN(x0,u) := J(x0,u, 0)

• We will ‘fluff’ over the stability proof, because we cannot demonstrate
robust stability in this case (i.e., asymptotic convergence for all possible
disturbances).

• The next lecture will introduce a new notion of stability that will allow us to
analyse this case
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Goals of Robust Constrained Control
Uncertain constrained linear system

x+ = Ax + Bu + w (x , u) ∈ X,U w ∈W

Design control law u = κ(x) such that the system:

1. Satifies constraints : {xi} ⊂ X, {ui} ⊂ U for all disturbance realizations
2. Is stable: Converges to a neighbourhood of the origin

3. Optimizes (expected/worst-case) “performance”

4. Maximizes the set {x0 |Conditions 1-3 are met}
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Robust Constraint Satisfaction
Recall: We break the MPC prediction into two parts.

φi+1 = Aφi + Bui + wi

ui ∈ U
φi ∈ X ∀w ∈WN





• i = 0, . . . ,N − 1

• Optimize over control actions {u0, . . . , uN−1}
• Enforce constraints explicitly by imposing φi ∈ X
and ui ∈ U for all sequences w

φi+1 = (A + BK )φi + wi

φN ∈ Xf





• i = N, . . .

• Assume control law to be linear ui = Kφi

• Enforce constraints implicitly by constraining φN

to be in an robust invariant set Xf ⊆ X and
KXf ⊆ U for the system φ+ = (A + BK )φ+ w

In the following:
• Robustly enforcing constraints of a linear system

• Robustly ensuring constraints of the sequence φ1, . . . , φN−1
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Robust Constraint Satisfaction

x0

Xf

,UZ\YL� [OH[� HSS� WVZZPISL� Z[H[LZ
�N(x0,u,w) HYL�JVU[HPULK�PU�[OL
[LYTPUHS�ZL[�

,UZ\YL� [OH[� HSS� WVZZPISL� Z[H[LZ
�i(x0,u,w) ZH[PZM`� Z`Z[LT� JVU�
Z[YHPU[Z X�

X

The idea: Compute a set of tighter constraints such that if the nominal
system meets these constraints, then the uncertain system will too.
We then do MPC on the nominal system.
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Robust Constraint Satisfaction
Recall: We break the MPC prediction into two parts.

φi+1 = Aφi + Bui + wi

ui ∈ U
φi ∈ X ∀w ∈WN





• i = 0, . . . ,N − 1

• Optimize over control actions {u0, . . . , uN−1}
• Enforce constraints explicitly by imposing φi ∈ X
and ui ∈ U for all sequences w

φi+1 = (A + BK )φi + wi

φN ∈ Xf





• i = N, . . .

• Assume control law to be linear ui = Kφi

• Enforce constraints implicitly by constraining φN

to be in an robust invariant set Xf ⊆ X and
KXf ⊆ U for the system φ+ = (A + BK )φ+ w

In the following:
• Robustly enforcing constraints of a linear system
• Robustly ensuring constraints of the sequence φ1, . . . , φN−1
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Reminder: Invariance
Constraint satisfaction, for an autonomous system x+ = f (x), or closed-loop
system x+ = f (x , κ(x)) for a given controller κ.

Positive Invariant set
A set O is said to be a positive invariant set for the autonomous system
xi+1 = f (xi ) if

xi ∈ O ⇒ xi ∈ O , ∀i ∈ {0, 1, . . . }

If we have an invariant set Xf ⊆ X and κ(Xf ) ⊆ U, then it provides a set of
initial states from which the trajectory will never violate the system constraints
if we apply the controller κ.
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Robust Invariant Set
Robust constraint satisfaction, for an autonomous system x+ = f (x ,w), or
closed-loop system x+ = f (x , κ(x),w) for a given controller κ.

Robust Positive Invariant set
A set OW is said to be a robust positive invariant set for the autonomous
system xi+1 = f (xi ,w) if

x ∈ OW ⇒ f (x ,w) ∈ OW , for all w ∈W
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Robust Pre-Sets
Robust Pre Set
Given a set Ω and the dynamic system x+ = f (x ,w), the pre-set of Ω is the
set of states that evolve into the target set Ω in one time step for all values
of the disturbance w ∈W:

preW(Ω) := {x | f (x ,w) ∈ Ω for all w ∈W}

�
preW(�)

x

f (x, 0)

f (x, w)
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Computing Robust Pre-Sets for Linear Systems

Goal: Given the system f (x ,w) = Ax + w , and the set Ω := {x |Fx ≤ f },
compute preW(Ω).

preW(Ω) = {x |Ax + w ∈ Ω, ∀w ∈W} = {x |FAx + Fw ≤ f , ∀w ∈W}

F iA
x �

f i

preW(Ω) =

{
x
∣∣∣∣FAx ≤ f −max

w∈W
Fw
}

= {x |FAx ≤ f − hW(F )} = A(Ω	W)

where hW is the support function and 	 is called the Pontryagin difference.
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Computing Robust Pre-Sets for Linear Systems

Goal: Given the system f (x ,w) = Ax + w , and the set Ω := {x |Fx ≤ f },
compute preW(Ω).

preW(Ω) = {x |Ax + w ∈ Ω, ∀w ∈W} = {x |FAx + Fw ≤ f , ∀w ∈W}

F iA
x �

f i

FiAx � fi � Fiw

preW(Ω) =

{
x
∣∣∣∣FAx ≤ f −max

w∈W
Fw
}

= {x |FAx ≤ f − hW(F )} = A(Ω	W)

where hW is the support function and 	 is called the Pontryagin difference.
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Computing Robust Pre-Sets for Linear Systems

Goal: Given the system f (x ,w) = Ax + w , and the set Ω := {x |Fx ≤ f },
compute preW(Ω).

preW(Ω) = {x |Ax + w ∈ Ω, ∀w ∈W} = {x |FAx + Fw ≤ f , ∀w ∈W}

F iA
x �

f i

FiAx � fi �max
w�W

Fiw

preW(Ω) =

{
x
∣∣∣∣FAx ≤ f −max

w∈W
Fw
}

= {x |FAx ≤ f − hW(F )} = A(Ω	W)

where hW is the support function and 	 is called the Pontryagin difference.
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Computing Robust Pre-Sets for Linear Systems

Goal: Given the system f (x ,w) = Ax + w , and the set Ω := {x |Fx ≤ f },
compute preW(Ω).

preW(Ω) = {x |Ax + w ∈ Ω, ∀w ∈W} = {x |FAx + Fw ≤ f , ∀w ∈W}

�
x

����FAx � f �max
w�W

Fw

�

W

preW(Ω) =

{
x
∣∣∣∣FAx ≤ f −max

w∈W
Fw
}

= {x |FAx ≤ f − hW(F )} = A(Ω	W)

where hW is the support function and 	 is called the Pontryagin difference.
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Robust Invariant Set Conditions
Theorem: Geometric condition for robust invariance
A set O is a robust positive invariant set if and only if

O ⊆ preW(O)

x

f (x, 0)

f (x, w)

preW(O)

O
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Computing Robust Invariant Sets
Conceptual Algorithm to Compute Robust Invariant Set
Input: f , X, W
Output: OW∞

Ω0 ← X
loop

Ωi+1 ← preW(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return O∞ = Ωi

end if
end loop

This is the same as for the nominal case, with pre(Ω) replaced by preW(Ω).
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Computing Robust Invariant Sets

x = (A + BK )x + w A =

[
1 1
0 1

]
B =

[
1
0.5

]

X = {x | ‖x‖∞ ≤ 5, ‖Kx‖∞ ≤ 1} W = {w | ‖w‖∞ ≤ 0.3}

K is the LQR controller for Q = 0.1I , R = 1

*VUZ[YHPU[�ZL[ X
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Computing Robust Invariant Sets

x = (A + BK )x + w A =

[
1 1
0 1

]
B =

[
1
0.5

]

X = {x | ‖x‖∞ ≤ 5, ‖Kx‖∞ ≤ 1} W = {w | ‖w‖∞ ≤ 0.3}

K is the LQR controller for Q = 0.1I , R = 1

Maximum !
nominal !
invariant set


*VUZ[YHPU[�ZL[ X

Robust MPC 7–41 Model Predictive Control ME-425



Computing Robust Invariant Sets

x = (A + BK )x + w A =

[
1 1
0 1

]
B =

[
1
0.5

]

X = {x | ‖x‖∞ ≤ 5, ‖Kx‖∞ ≤ 1} W = {w | ‖w‖∞ ≤ 0.3}

K is the LQR controller for Q = 0.1I , R = 1

Maximum !
nominal !
invariant set


Maximum !
robust!
invariant set


*VUZ[YHPU[�ZL[ X
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Computing Robust Invariant Sets

x = (A + BK )x + w A =

[
1 1
0 1

]
B =

[
1
0.5

]

X = {x | ‖x‖∞ ≤ 5, ‖Kx‖∞ ≤ 1} W = {w | ‖w‖∞ ≤ 0.3}

K is the LQR controller for Q = 0.1I , R = 1

Maximum !
nominal !
invariant set


Maximum !
robust!
invariant set


*VUZ[YHPU[�ZL[ X
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Computing Robust Invariant Sets

x = (A + BK )x + w A =

[
1 1
0 1

]
B =

[
1
0.5

]

X = {x | ‖x‖∞ ≤ 5, ‖Kx‖∞ ≤ 1} W = {w | ‖w‖∞ ≤ 0.3}

K is the LQR controller for Q = 0.1I , R = 1

Maximum !
nominal !
invariant set


Maximum !
robust!
invariant set


*VUZ[YHPU[�ZL[ X
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Robust Constraint Satisfaction
Recall: We break the MPC prediction into two parts.

φi+1 = Aφi + Bui + wi

ui ∈ U
φi ∈ X ∀w ∈WN





• i = 0, . . . ,N − 1

• Optimize over control actions {u0, . . . , uN−1}
• Enforce constraints explicitly by imposing φi ∈ X
and ui ∈ U for all sequences w

φi+1 = (A + BK )φi + wi

φN ∈ Xf





• i = N, . . .

• Assume control law to be linear ui = Kφi

• Enforce constraints implicitly by constraining φN

to be in an robust invariant set Xf ⊆ X and
KXf ⊆ U for the system φ+ = (A + BK )φ+ w

In the following:
• Robustly enforcing constraints of a linear system

• Robustly ensuring constraints of the sequence φ1, . . . , φN−1
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Robust Constraint Satisfaction

x0

Xf

,UZ\YL� [OH[� HSS� WVZZPISL� Z[H[LZ
�N(x0,u,w) HYL�JVU[HPULK�PU�[OL
[LYTPUHS�ZL[�

,UZ\YL� [OH[� HSS� WVZZPISL� Z[H[LZ
�i(x0,u,w) ZH[PZM`� Z`Z[LT� JVU�
Z[YHPU[Z X�

X

The idea: Compute a set of tighter constraints such that if the nominal
system meets these constraints, then the uncertain system will too.
We then do MPC on the nominal system.
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Uncertain State Evolution
Nominal system

x+ = Ax + Bu

x1 = Ax0 + Bu0
x2 = A2x0 + ABu0 + Bu1
...

xi = Aix0 +

i−1∑

k=0

ABui−k

Uncertain system

x+ = Ax + Bu + w ,w ∈W

φ1 = Ax0 + Bu0 + w0

φ2 = A2x0 + ABu0 + Bu1 + Aw0 + w1

...

φi = Aix0 +

i−1∑

k=0

AkBui−k +

i−1∑

k=0

Akwi−k

φi = xi +

i−1∑

k=0

Akwi−k

Goal: Ensure φi ∈ X for all w ∈WN
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Robust Constraint Satisfaction
Goal: Ensure that constraints are satisfied for the MPC sequence.

φi (x0,u,w) =

{
xi +

i−1∑

k=0

Akwk

∣∣∣∣∣ w ∈W
i

}
⊆ X

Assume that X = {x |Fx ≤ f }, then this is equivalent to

Fxi + F
i−1∑

k=0

Akwk ≤ f ∀w ∈Wi

We’ve seen this before while computing the robust pre-set:

Fxi ≤ f − max
w∈Wi

F
i−1∑

k=0

Akwk = f − hWi

(
F

i−1∑

k=0

Ak

)

The support function can be pre-computed offline.
All we’re doing is tightening the constraints on the nominal system

Robust MPC 7–48 Model Predictive Control ME-425



Robust Constraint Satisfaction
Goal: Ensure that constraints are satisfied for the MPC sequence.

x0

Xf

;PNO[LULK�JVUZ[YHPU[Z�MVY �1

x1

Require: xi ∈ X	
[
I A0 . . . Ai−1]Wi and

Nominal xi satisfies tighter constraints → Uncertain state does too
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Terminal State Constraint
We also need to ensure that the Nth state φN(x0,u,w) is contained in the
robust control invariant set Xf :

φN(x0,u,w) ⊆ Xf

This is handled in exactly the same fashion.
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Outline

1. Uncertainty Models

2. Impact of Bounded Additive Noise

• Choosing a cost to minimize

• Robust Constraint Satisfaction

3. Robust Open-Loop MPC

Robust MPC 7–51 Model Predictive Control ME-425



Goals of Robust Constrained Control
Uncertain constrained linear system

x+ = Ax + Bu + w (x , u) ∈ X,U w ∈W

Design control law u = κ(x) such that the system:

1. Satifies constraints : {xi} ⊂ X, {ui} ⊂ U for all disturbance realizations

2. Is stable: Converges to a neighbourhood of the origin

3. Optimizes (expected/worst-case) “performance”

4. Maximizes the set {x0 |Conditions 1-3 are met}
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Putting it Together
Robust Open-Loop MPC

min
u

N−1∑

i=0

l(xi , ui ) + Vf (xN)

s.t. xi+1 = Axi + Bui

xi ∈ X	AiWi

ui ∈ U
xN ∈ Xf 	ANWN

where Ai :=
[
A0 A1 . . . Ai

]
and X̃f is a robust invariant set for the system

x+ = (A + BK )x for some stabilizing K .

We do nominal MPC, but with tighter constraints on the states and inputs.

We can be sure that if the nominal system satisfies the tighter constraints,
then the uncertain system will satisfy the real constraints.
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Properties of Robust Open-Loop MPC
Robust Control Invariance
If u?(x) is the optimizer of the robust open-loop MPC problem, then the
system Ax + Bu?0(x) + w ∈ X for all w ∈W.

This follows because the trajectory we computed at the current time is feasible
for any disturbance, and therefore it’s feasible for the one that we actually
observe.

We have shown the key property of robust MPC: robust invariance.

However, we have not shown convergence...
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Goals of Robust Constrained Control
Uncertain constrained linear system

x+ = Ax + Bu + w (x , u) ∈ X,U w ∈W

Design control law u = κ(x) such that the system:

1. Satifies constraints : {xi} ⊂ X, {ui} ⊂ U for all disturbance realizations

2. Is stable: Converges to a neighbourhood of the origin
3. Optimizes (expected/worst-case) “performance”

4. Maximizes the set {x0 |Conditions 1-3 are met}

Analysis is not direct - we will consider this in a more general setting next week.
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Goals of Robust Constrained Control
Uncertain constrained linear system

x+ = Ax + Bu + w (x , u) ∈ X,U w ∈W

Design control law u = κ(x) such that the system:

1. Satifies constraints : {xi} ⊂ X, {ui} ⊂ U for all disturbance realizations

2. Is stable: Converges to a neighbourhood of the origin

3. Optimizes (expected/worst-case) “performance”

4. Maximizes the set {x0 |Conditions 1-3 are met}

Robust open-loop MPC has a very small region of attraction!
This is why you should not use it!
It is a theoretical development to give you the concepts. Next week we will go
through some more practical methods.
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Lecture Take Homes

1. MPC relies on a model, but models are far from perfect

2. Noise and model inaccuracies can cause:
Constraint violation
Sub-optimal behaviour can result

3. Persistent noise prevents the system from converging to a single point

4. Can incorporate some noise models into the MPC formulation
Solving the resulting optimal control problem is extremely difficult
Many approximations exist, but most are very conservative
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