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Recap: Three Key Issues that are Always Present

Feasible Set
o Constraints restrict set of states for which optimization problem is feasible
e MPC controller is only defined in the feasible set, where a solution exists
= Drop terminal set

= Soften constraints

Tracking
e Classic MPC problem: Regulation to the origin

e Common task in practice: Tracking of non-zero output set points

= Move origin and solve regulation problem

Disturbance rejection
« Constant disturbance causes offset from the origin / the desired set point

= Estimate disturbance and compensate by ‘tracking’ to artificial target
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MPC without Terminal Set

Can remove terminal constraint while maintaining stability if
e initial state lies in sufficiently small subset of feasible set
¢ N is sufficiently large

such that terminal constraint is satisfied without enforcing it
= Solution of finite horizon MPC problem = infinite horizon solution

Downsides:
e Loose recursive feasibility — Feasible now, does not mean feasible later

e Characterizing invariant region extremely difficult — It may work, it may not
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Soft constrained MPC problem setup
N—1 X1
muin Z X" Qx; + u” Ruj + p(e;) + x4 Pxn €1
i=0
s.t. xiy1 = Ax; + Bu; x
Hexi < ke + €,
X3
HUU,‘ < ku, e3=0
€ Z 0
e Relax state constraints by introducing so called slack variables ¢; € R”
e Penalize constraint violation in cost by means of penalty p(¢;)

Pros/Cons

o Problem is always feasible (criticall)
e Tune p for tradeoff between amount of violation and duration (difficult)
e No theory: May not be stabilizing

= Always used in practice
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Recap: Three Key Issues that are Always Present

Feasible Set
o Constraints restrict set of states for which optimization problem is feasible
e MPC controller is only defined in the feasible set, where a solution exists
= Drop terminal set

= Soften constraints

Tracking
e Classic MPC problem: Regulation to the origin

e Common task in practice: Tracking of non-zero output set points

= Move origin and solve regulation problem

Disturbance rejection
« Constant disturbance causes offset from the origin / the desired set point

= Estimate disturbance and compensate by ‘tracking’ to artificial target
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MPC problem for tracking

o Obtain target steady-state corresponding to reference r.

¢ Initial state Ax = x — x.
e Apply regulation problem to new system in Delta-Formulation:

N—1
min Z AxT QAX; + Au RAU; + Vi(Dxy)

i=0 u=Au+ us
s.t. Axg = Ax Ax [ mpc T o R

Axipq = AAx; + BAU; regulator plan

HyAx; < Ky — Hixs [ us

X
) o target
HuAui < ku = Huyus selector «— r
Axy € Xr

e Find optimal sequence of Au*
e Input applied to the system is u§ = Aug + us
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Offset-free tracking: Delta-Formulation

At each sampling time

1. Estimate state and disturbance X, d
2. Obtain (xs, us) from steady-state target problem using disturbance estimate
3. Initial state AX = X — xs
4. Solve MPC problem for tracking in Delta-Formulation:
N-1
min Z AxT QAX; + Au RAU; + Vi(Dxy)
i=0 u=Au+us
s.t. Axg = AX A%| MPC y
Axii1 = ADX; + BAU, reguator e j
HXAXi < kX o HXXS o estimator
H,Aui < ky, — Hyus o
Asw € X o
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Lecture Take Homes

1. MPC relies on a model, but models are far from perfect

2. Noise and model inaccuracies can cause:

— Constraint violation
— Sub-optimal behaviour can result

3. Persistent noise prevents the system from converging to a single point

4. Can incorporate some noise models into the MPC formulation

— Solving the resulting optimal control problem is extremely difficult
— Many approximations exist, but most are very conservative
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Outline

1. Uncertainty Models
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MPC vs The Real World

Predictive control assumption: The real world:

xT = f(x, u) xT = g(x,u,w;0)

e System evolves in a predictable
fashion

¢ Random noise w changes the
evolution of the system

e Model structure is unknown

o Unknown parameters 8 impact the
dynamics

(w changes with time, 6 is unknown,
but constant)

This lecture: What can we hope to do in this (real) situation?
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Recall: Goals of Constrained Control

Constrained system

xT = f(x, u) (x,u) eX, U

Design control law u = k(x) such that the system:

1.

Satifies constraints : {x;} C X, {y;} CU

2. Is stable: limjLoso X, =0
3.
4. Maximizes the set {xp | Conditions 1-3 are met }

Optimizes “performance”

What if f is only known approximately?
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Goals of Robust Constrained Control

Uncertain Constrained System

xt = f(x, u,w;0) xueXU weW 6c0O

Design control law u = k(x) such that the system:

1.

Satifies constraints : {x;} C X, {u;} C U for all disturbance realizations

2. Is stable: Converges to a neighbourhood of the origin
3.
4. Maximizes the set {xp | Conditions 1-3 are met }

Optimizes (expected/worst-case) “performance”

Meeting these goals requires some knowledge/assumptions about the random
values w and 9.
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Examples of Common Uncertainty Models

Measurement / Input Bias

g(x, u,w;0) =f(x,u)+0

6 unknown, but constant

e Unexpected offset can cause constraint violation
o Offset doesn't change, or changes slowly with time

— Generally handled by estimating offset and compensating
(last week's lecture)

o Constraint violation still possible before offset is estimated
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Examples of Common Uncertainty Models

Linear Parameter Varying System

g(x, u, w;0) ZGkAkarZGkBku 176=1,0>0

Ak, Bk known, 8, unknown, but constant

e Actual system is linear - but exact dynamics unknown

e Preventing constraint violation requires considering all possible trajectories
(very conservative)

o Often handled by estimating 6 (adaptive control), since it is constant, or
changes slowly

— Very difficult if system is unstable
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Examples of Common Uncertainty Models

Polytopic Uncertainty

t t
g(x, u,w;0) = Z WK AKX + Z weBku, 1Tw=1, w>0
k=0 k=0

Ak, Bk known, wy unknown and changing at each sample time

¢ Dynamics change randomly at each point in time — nonlinear system

e Preventing constraint violation requires considering all possible trajectories
(not conservative, since they can all happen)

e Commonly dealt with via robust MPC

We will not cover this case in this course, but analysis is similar to additive
noise.
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Examples of Common Uncertainty Models

Additive Stochastic Noise
g(x,u,w;0) = Ax+ Bu+w

Distribution of w known

¢ Distribution of the disturbance is known

o Problem significantly more challenging (even to formulate the goals)
e Topic of active research
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Examples of Common Uncertainty Models

Additive Bounded Noise
g(x,uw;0)=Ax+Bu+w, weW

A, B known, w unknown and changing with each sample

e Dynamics are linear, but impacted by random, bounded noise at each time
step

e Can model many nonlinearities in this fashion, but often a conservative
model

e The noise is persistent, i.e., it does not converge to zero in the limit

The next lectures will focus on uncertainty models of this form.
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Outline

2. Impact of Bounded Additive Noise

e Choosing a cost to minimize
¢ Robust Constraint Satisfaction
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Model Predictive Control ME-425



Goals of Robust Constrained Control

Uncertain constrained linear system

xt=Ax+Bu+w (x,u)eX,U wew

Design control law u = k(x) such that the system:

1. Satifies constraints : {x;} C X, {u;} C U for all disturbance realizations
2. Is stable: Converges to a neighbourhood of the origin

3. Optimizes (expected/worst-case) “performance”

4. Maximizes the set {xo | Conditions 1-3 are met }

Challenge: Cannot predict where the state of the system will evolve
We can only compute a set of trajectories that the system may follow

Idea: Design a control law that will satisfy constraints and stabilize the system
for all possible disturbances
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Uncertain State Evolution

Given the current state xg, the model xt = Ax + Bu + w and the set W,
where can the state be / steps in the future?

Many possible
trajectories ¢;(xg, u, w)

X0 Trajectory for w = 0

Define ¢i(xo, u, w) as the state that the system will be in at time i if the state
at time zero is xp, we apply the input u:= {up, ..., uy—1} and we observe the
disturbance w := {wp, ..., wy_1}.
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Uncertain State Evolution

Nominal system Uncertain system
xt = Ax+ Bu xt=Ax+Bu+w,weW
x1 = Axg + Buyg ¢1 = Axg + Bug + wy
Xp = A2X0 + ABUO + BLI1 (1)2 = A2X0 + ABUO + BU1 + AWO + wy
i—1 i—1 i—1
x; = A'xg + Z ABu;_x ¢ =Axo + Z AkBLl,;k + Z Ak Wi_k
k=0 k=0 k=0
i-1
¢i=x+ Z ARy
k=0

Uncertain evolution is the nominal system + offset caused by the disturbance
(Follows from linearity)
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Uncertain State Evolution

Many possible
trajectories ¢;(xo, u, w)
i—1
Oi(x0, u, W) = x; + Z Al
k=0

\\\“\X‘

1
X0 Trajectory for w = 0
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Goals of Robust Constrained Control

Uncertain constrained linear system

xt=Ax+Bu+w (x,u)eX,U wew

Design control law u = k(x) such that the system:

1.
2. Is stable: Converges to a neighbourhood of the origin
3.

4. Maximizes the set {xo | Conditions 1-3 are met }

Satifies constraints : {x;} C X, {u;} C U for all disturbance realizations

Optimizes (expected/worst-case) “performance”
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Defining a Cost to Minimize

Previously, we defined some function that describes a ‘good’ trajectory:

N—-1

J(xou) == I(xi, 1) + Ve(xn)

i=0
However, there are now many trajectories that may occur, depending on the
disturbance w.

The cost is now a function of the disturbance seen, and therefore each
possible trajectory has a different cost:

=
—

J(xo,u,w) := 1(@i(x0, u, w), uj) + Ve(dn(xo0, u, w))

i

Il
o

Need to ‘eliminate’ the dependence on w.
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Defining a Cost to Minimize

Several common options:

» Minimize the expected value (requires some assumption on the distribution)
Vn(xo, u) := E[J(x0, u, w)]
o Minimize the variance (requires some assumption on the distribution)
Vin(Xo, u) := Var (J(xo, u, w))
o Take the worst-case

Viv(xo, u) := Max J(x0, u, w)

e Take the nominal case

Viv(xo, u) := J(xo, u,0)
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Defining a Cost to Minimize
In this lecture we will assume the nominal case for simplicity.

V/\/(Xo, u) = J(Xo, u, O)

o We will ‘fluff’ over the stability proof, because we cannot demonstrate
robust stability in this case (i.e., asymptotic convergence for all possible
disturbances).

e The next lecture will introduce a new notion of stability that will allow us to
analyse this case
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Goals of Robust Constrained Control

Uncertain constrained linear system

xt=Ax+Bu+w (x,u)eX,U wew

Design control law u = k(x) such that the system:

1.
2. Is stable: Converges to a neighbourhood of the origin
3.

4. Maximizes the set {xo | Conditions 1-3 are met }

Satifies constraints : {x;} C X, {v;} C U for all disturbance realizations

Optimizes (expected/worst-case) “performance”
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Robust Constraint Satisfaction
Recall: We break the MPC prediction into two parts.
i1 = Api + Bui + w;

u el
¢ € X yw ¢ WV

o Optimize over control actions {ug, ..., Un_1}

e Enforce constraints explicitly by imposing ¢; € X
and u; € U for all sequences w

e i=N, ...
bisr = (A+ BK)YG +wi | * Assume control law to be linear u; = K¢;

by € Xf e Enforce constraints implicitly by constraining ¢y

to be in an robust invariant set Xr C X and
KXr C U for the system ¢* = (A+ BK)p + w

In the following:
e Robustly enforcing constraints of a linear system

e Robustly ensuring constraints of the sequence ¢, ..., dn_1
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Robust Constraint Satisfaction

Ensure that all possible states
¢i(x0, u, w) satisfy system con-
straints X.

Ensure that all possible states
¢n(x0, u, w) are contained in the
terminal set.

The idea: Compute a set of tighter constraints such that if the nominal
system meets these constraints, then the uncertain system will too.
We then do MPC on the nominal system.
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Robust Constraint Satisfaction
Recall: We break the MPC prediction into two parts.
i1 = Api + Bui + w;

u el
di € X yw e WV

o Optimize over control actions {ug, ..., Un_1}

e Enforce constraints explicitly by imposing ¢; € X
and u; € U for all sequences w

e i=N, ...
bisr = (A+ BK)YG +wi | * Assume control law to be linear u; = K¢;

by € Xf e Enforce constraints implicitly by constraining ¢y

to be in an robust invariant set Xr C X and
KXr C U for the system ¢* = (A+ BK)p + w

In the following:
¢ Robustly enforcing constraints of a linear system

e Robustly ensuring constraints of the sequence ¢, ..., dn_1
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Reminder: Invariance

Constraint satisfaction, for an autonemous system x™ = f(x), or closed-loop
system xT = f(x, k(x)) for a given controller k.

Positive Invariant set
A set O is said to be a positive invariant set for the autonomous system

Xi+1 = f(X,') if

x €O = x,€0, Vie{01,...}

If we have an invariant set Xr C X and k(Xf) C U, then it provides a set of
initial states from which the trajectory will never violate the system constraints
if we apply the controller k.
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Robust Invariant Set

Robust constraint satisfaction, for an autonomous system x* = f(x, w), or
closed-loop system x* = f(x, k(x), w) for a given controller k.

Robust Positive Invariant set
A set OW is said to be a robust positive invariant set for the autonomous
system xj11 = f(x;, w) if

xeOV = f(x,w)eOV  foralwew
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Robust Pre-Sets

Robust Pre Set

Given a set Q and the dynamic system x™ = f(x, w), the pre-set of Q is the
set of states that evolve into the target set Q in one time step for all values
of the disturbance w € W:

pre’(Q) := {x | f(x,w) € Q for all w € W}

pre” (Q) f(x, w)
X
7
f(x,0)
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Computing Robust Pre-Sets for Linear Systems

Goal: Given the system f(x, w) = Ax + w, and the set Q :={x | Fx < f},
compute pre"(Q).

preV(Q) = {x |[Ax+weQ YweW}={x|FAx+Fw <f YweW}
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Computing Robust Pre-Sets for Linear Systems

Goal: Given the system f(x, w) = Ax + w, and the set Q :={x | Fx < f},
compute pre"(Q).

preV(Q) = {x |[Ax+weQ YweW}={x|FAx+Fw <f YweW}

/,:;\-:.j\F/AX <fi— Fw
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Computing Robust Pre-Sets for Linear Systems

Goal: Given the system f(x, w) = Ax + w, and the set Q :={x | Fx < f},
compute pre"(Q).

preV(Q) = {x |[Ax+weQ YweW}={x|FAx+Fw <f YweW}

" e— FiAXx < fi — max Fjw
weWw
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Computing Robust Pre-Sets for Linear Systems

Goal: Given the system f(x, w) = Ax + w, and the set Q := {x | Fx < f},
compute pre™(Q).

preV(Q) = {x |[Ax+weQ YweW} ={x|FAx+Fw < f, Vwe W}

{x

FAx < f—maxFW}

wew

pre’(Q) = {x

FAx < f—ma&lFW} ={x |FAX<f—hw(F)} =AQOW)
we

where hy is the support function and & is called the Pontryagin difference.
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Robust Invariant Set Conditions

Theorem: Geometric condition for robust invariance

A set O is a robust positive invariant set if and only if

O C prew((’))
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Computing Robust Invariant Sets

Conceptual Algorithm to Compute Robust Invariant Set
Input: £, X, W
Output: OV

Qo +— X
loop
Qi+1 — preW(Q,-) N Q;
if Q/+1 = Q; then
return O, = ;
end if
end loop

This is the same as for the nominal case, with pre(2) replaced by pre™ ().
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Computing Robust Invariant Sets

x = (A+ BK)x +w A=[é ﬂ B:[og]

X={x1lxlle <5, IKxllo <1} W ={w [[w]le <0.3}

K is the LQR controller for Q = 0.1/, R=1

Constraint set X
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Computing Robust Invariant Sets

x = (A+ BK)x + w A—[(l) ﬂ B_{oﬂ

X={x|lIxllo <5 [[Kxllc <1}  W={w [[w]ls <0.3}

K is the LQR controller for Q = 0.1/, R=1

Constraint set X
Maximum

nominal
invariant set
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Computing Robust Invariant Sets

x = (A+ BK)x + w A—[(l) ﬂ B_{oﬂ

X={x|lIxllo <5 [[Kxllc <1}  W={w [[w]ls <0.3}

K is the LQR controller for Q = 0.1/, R=1

Constraint set X

Maximum
Maximum robust
nominal invariant set

invariant set /

Robust MPC 7-42 Model Predictive Control ME-425



Computing Robust Invariant Sets

x = (A+ BK)x + w A—[(l) ﬂ B_{oﬂ

X={x|lIxllo <5 [[Kxllc <1}  W={w [[w]ls <0.3}

K is the LQR controller for Q = 0.1/, R=1

Constraint set X

Maximum
robust
invariant set

/

Maximum
nominal
invariant set
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Computing Robust Invariant Sets

x = (A+ BK)x + w A—[(l) ﬂ B_{oﬂ

X={x|lIxllo <5 [[Kxllc <1}  W={w [[w]ls <0.3}

K is the LQR controller for Q = 0.1/, R=1

Constraint set X

Maximum
robust
invariant set

/

Maximum
nominal
invariant set
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Robust Constraint Satisfaction
Recall: We break the MPC prediction into two parts.
i1 = Api + Bui + w;

u el
di € X yw e WV

o Optimize over control actions {ug, ..., Un_1}

e Enforce constraints explicitly by imposing ¢; € X
and u; € U for all sequences w

e i=N, ...
bisr = (A+ BK)YG +wi | * Assume control law to be linear u; = K¢;

by € Xf e Enforce constraints implicitly by constraining ¢y

to be in an robust invariant set Xr C X and
KXr C U for the system ¢* = (A+ BK)p + w

In the following:
e Robustly enforcing constraints of a linear system

e Robustly ensuring constraints of the sequence ¢, ..., dn-1
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Robust Constraint Satisfaction

Ensure that all possible states
¢i(x0, u, w) satisfy system con-
straints X.

Ensure that all possible states
¢n(x0, u, w) are contained in the
terminal set.

The idea: Compute a set of tighter constraints such that if the nominal
system meets these constraints, then the uncertain system will too.
We then do MPC on the nominal system.
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Uncertain State Evolution

Nominal system Uncertain system
xt = Ax+ Bu xt=Ax+Bu+w,weW
x1 = Axg + Buyg ¢1 = Axg + Bug + wy
Xp = A2X0 + ABUO + BU1 (1)2 = A2X0 + ABUO + BU1 + AWO + wy
i—1 i—1 i—1
x; = A'xg + Z ABu;_x ¢ =Axo + Z AkBLl,;k + Z Ak Wi_k
k=0 k=0 k=0
i-1
¢i=x+ Z ARy
k=0

Goal: Ensure ¢, € X for all w € WV
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Robust Constraint Satisfaction

Goal: Ensure that constraints are satisfied for the MPC sequence.

i—1

di(x0, u,w) = {x,- + ZAka

k=0

WGW’}CX

Assume that X = {x | Fx < f}, then this is equivalent to

i—1
Fxi+ FY Afw < f Yw e W
k=0

We've seen this before while computing the robust pre-set:

i—1 i—1
Fx, < f — maxFZAka_ f— hyy (FZA")

WI
we k=0

The support function can be pre-computed offline.
All we’re doing is tightening the constraints on the nominal system
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Robust Constraint Satisfaction

Goal: Ensure that constraints are satisfied for the MPC sequence.

Tightened constraints for ¢,

Require: x; e Xo [/ AY ... A7 W and
Nominal x; satisfies tighter constraints — Uncertain state does too
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Terminal State Constraint

We also need to ensure that the N state ¢y (xo, u, w) is contained in the
robust control invariant set X:

dn(xo u,w) C X

This is handled in exactly the same fashion.
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Outline

3. Robust Open-Loop MPC
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Goals of Robust Constrained Control

Uncertain constrained linear system

xt=Ax+Bu+w (x,u)eX,U wew

Design control law u = k(x) such that the system:

1.
2. Is stable: Converges to a neighbourhood of the origin
3.

4. Maximizes the set {xo | Conditions 1-3 are met }

Satifies constraints : {x;} C X, {u;} C U for all disturbance realizations

Optimizes (expected/worst-case) “performance”
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Putting it Together

Robust Open-Loop MPC

N—-1

muin Z (i, ui) + Ve(xn)

i=0
s.t. xiy1 = Ax; + Bu;
xi € X6 A,‘Wi
u el
xy € Xr & AyW"

where A; := [A° A ... A’] and Ar is a robust invariant set for the system
xT = (A+ BK)x for some stabilizing K.

We do nominal MPC, but with tighter constraints on the states and inputs.

We can be sure that if the nominal system satisfies the tighter constraints,
then the uncertain system will satisfy the real constraints.
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Properties of Robust Open-Loop MPC

Robust Control Invariance
If u*(x) is the optimizer of the robust open-loop MPC problem, then the
system Ax + Bug(x) +w € X for all w € W.

This follows because the trajectory we computed at the current time is feasible
for any disturbance, and therefore it's feasible for the one that we actually
observe.

We have shown the key property of robust MPC: robust invariance.

However, we have not shown convergence...

Robust MPC 7-54 Model Predictive Control ME-425



Goals of Robust Constrained Control

Uncertain constrained linear system

xt=Ax+Bu+w (x,u)eX,U wew

Design control law u = k(x) such that the system:

1.

Satifies constraints : {x;} C X, {u;} C U for all disturbance realizations

2. Is stable: Converges to a neighbourhood of the origin
3.
4. Maximizes the set {xo | Conditions 1-3 are met }

Optimizes (expected/worst-case) “performance”

Analysis is not direct - we will consider this in a more general setting next week.
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Goals of Robust Constrained Control

Uncertain constrained linear system
xt=Ax+Bu+w (x,u)eX,U wew

Design control law u = k(x) such that the system:

1. Satifies constraints : {x;} C X, {u;} C U for all disturbance realizations
2. Is stable: Converges to a neighbourhood of the origin

3. Optimizes (expected/worst-case) “performance”

4. Maximizes the set {x; | Conditions 1-3 are met }

Robust open-loop MPC has a very small region of attraction!

This is why you should not use it!

It is a theoretical development to give you the concepts. Next week we will go
through some more practical methods.
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Lecture Take Homes

1. MPC relies on a model, but models are far from perfect

2. Noise and model inaccuracies can cause:

— Constraint violation
— Sub-optimal behaviour can result

3. Persistent noise prevents the system from converging to a single point

4. Can incorporate some noise models into the MPC formulation

— Solving the resulting optimal control problem is extremely difficult
— Many approximations exist, but most are very conservative
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